Skip to content

R Frequently Asked Questions

Statistical Computing and Graphics in R

Menu
  • Learn R
    • R Basics
      • R FAQS about Package
      • R GUI
      • Using R packages
      • Missing Values
    • R Graphics
    • Data Structure
      • Data Frame
      • Matrices
      • List
    • R Programming
    • Statistical Models
  • R Quiz
    • MCQs R Programming
    • R Basic Quiz 7
    • MCQs R Debugging 6
    • MCQs R Vectors 5
    • R History & Basics 4
    • R Language Test 3
    • R Language MCQs 2
    • R Language MCQs 1
  • MCQs
    • MCQs Statistics
      • MCQs Basic Statistics
      • MCQs Probability
      • MCQs Graph & Charts
      • MCQs Sampling
      • MCQs Inference
      • MCQs Correlation & Regression
      • MCQs Time Series
      • MCQs Index Numbers
      • MCQs Quality Control 1
    • MCQS Computer
    • MCQs Mathematics Part-I
  • About ME
  • Contact Us
  • Glossary

Category: List

Lists in R: Create, Name, and Append a List

No Comments
| Data Structure, List

Before understanding and working on lists, let’s review the other data types in R

Each of the data type (vectors, matrices, and data frames) has some level of constraints. For example, vectors are single column data type and can only store one type of data. Matrices are of two-dimensional, but they can store only one type of data. On the other hand, data frames are two-dimensional and can store different types of data, but in data frames the length of columns should be same.

Now comes to lists.

In R, lists have no such constraints as vectors, matrices and data frames have. The element of a list can contain any type of data can contain any type of data having varying length for each element.

Lists are the most flexible data type in R, as the list can hold all kind of different operations when programming. Let us consider some examples about how to create lists in R, and how elements of the list can be named, retrieved and appended. The list data type is created using list() keyword. For examples,

mylist <- list('alpha', 'beta', 'gamma', 1:5, TRUE)

Note that lists are printed differently and they have their own form of indexing for retrieving each element of the list.

Retrieving List Elements

The certain element of a list can be accessed using subsetting technique (on the basis of the list indexing mechanism. For example, to access the first three elements of the list created above, one can write in R console as,

The certain element of a list can be accessed using subsetting technique (on the basis of the list indexing mechanism. For example, to access the first three elements of the list created above, one can write in R console as,

mylist[1:3]

To examine one element of the list, double square brackets can be used with required index number. For example, to access the fourth element of the list, one can use,

mylist[[4]]

Note when one use normal subsetting, a list will be obtained as a result. When double square brackets are used the contents of the elements are obtained. Note the difference and command and output of each command used below:

mylist[4]
mylist[[4]]

The elements of a list can be named, and elements of lists can be retrieved using $ operator instead of square brackets. The first command will name the elements of the mylist object. and then other commands will result in the same output.

names(mylist) <- c("a", "b", "c", "d", "e")
mylist$d
myslit[[4]]

Appending an Element to List

Like data frames, an element of a list can be created by assigning something to an index that does not exist yet. For example, a sixth element is added to the list

mylist$f <- c("Pass", "Fail")

Now the 6th element of the list contains a vector of strings “Pass”, and “Fail”. To check this,

mylist$f
mylist[[6]]

To access the elements of specific list vector subsetting and two square brackets can be used. For example to access the fourth element of the list one can use,

mylist[[4]][3] # 3rd element of 4th list element
mylist[[4]][1:3]# first three elements of 4th list element
mylist$d[3]

For further reading about lists see the link Lists in R.

Share this:

  • Twitter
  • Facebook
  • LinkedIn
  • Skype
  • Tumblr
  • Pinterest
  • Print
  • WhatsApp
  • Telegram
  • Reddit
  • Pocket

Like this:

Like Loading...

Read More »

List in R Language

No Comments
| List

In R language, a list is an object that consists of an ordered collection of objects known as its components. A list in R Language is a structured data that can have any number of any modes (types) or other structured data. That is, one can put any kind of object (like vector, data frame, character object, matrix and/ or array) into one list object. An example of a list is

> x <- list(c(1,2,3,5), c(“a”, “b”, “c”, “d”), c(T, T, F, T, F), matrix(1:9, nr = 3) )

that contains 4 components, three of them are vectors (numeric, string and a logical) and one of them is matrix.

An object can also be converted to list by using as.list( ) function. For vector, the disadvantage is that each element of the vector becomes a component of that list. For example,

> as.list (1: 10)

Extract components from a list

The operator [[ ]] (double square bracket) is used to extract the components of a list. To extract the second component of the list, one can write at R prompt,

> list[[2]]

Using [ ] operator return a list rather than the structured data (the component of the list). The component of the list need not be of the same mode. The components are always numbered. If x1 is the name of a list with four components, then individual components may be referred to as x1[[1]], x1[[2]], x1[[3]], and x1[[4]].

If component of a list are defined then these component can be extracted by using the name of components. For example, a list with named component is

> x1 <- list(a = c(1,2,3,5), b = c(“a”, “b”, “c”, “d”), c = c(T, T, F, T, F),
d = matrix(1:9, nr = 3) )

To extract the component a, one can write

> x1$a
> x1[“a”]
> x1[[“a”]]

To extract more than one component, one can write

> x[c(1,2)]    #extract component one and two
> x[-1]         #extract all component except 1st
> x[[c(1,2)]] #extract 2nd element of component one
> x[[c(2,2)]] #extract 2nd element of component two
> x[[c(2:4)]] #extract all elements of component 2 to 4

Share this:

  • Twitter
  • Facebook
  • LinkedIn
  • Skype
  • Tumblr
  • Pinterest
  • Print
  • WhatsApp
  • Telegram
  • Reddit
  • Pocket

Like this:

Like Loading...

Read More »

Subscribe via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 265 other subscribers

Search Form

Facebook

Facebook

Categories

  • Advance R Programming (3)
  • Data Analysis (12)
    • Comparisons Tests (2)
    • Statistical Models (10)
  • Data Structure (9)
    • Data Frame (2)
    • Factors in R (1)
    • List (2)
    • Matrices (2)
    • Vectors in R (1)
  • Importing/ Exporting Data (4)
    • R Data Library (4)
  • R Control Structure (3)
    • For loop in R (1)
    • Switch Statement (1)
  • R FAQS (18)
    • Missing Values (2)
    • R Basics (12)
    • R FAQS about Package (3)
    • R Programming (2)
  • R Graphics (4)
    • Exploring Data in R (1)
    • plot Function (2)
  • R Language Basics (4)
  • R Language Quiz (8)
  • Using R packages (2)
https://www.youtube.com/watch?v=MZpiMyAfnYQ&list=PLB01qg3XnNiMbKkvP2wYzzHkv6ZekaKZx

Posts: itfeature.com: Basic Statistics and Data Analysis

MCQs Chi-Square Association 2

The relationship/ Dependency (also called Association) between the attributes is called relationship/association and the measure of degrees of relationship between the attributes is called the coefficient of association. The Chi-Square Statistic is used to…

Short Questions Sampling and Sampling Distributions 1

The post is about some important Short Questions about sampling and sampling distribution. Q1: Define Sample and Sampling. Answer: Sample: A small portion of the population representing the qualities of the population being sampled…

MCQs IBM SPSS-1

Online MCQs about IBM SPSS with answers.

MCQs Correlation and Regression 6

This Quiz contains MCQs about Correlation and Regression Analysis, Multiple Regression Analysis, Coefficient of Determination (Explained Variation), Unexplained Variation, Model Selection Criteria, Model Assumptions, Interpretation of results, Intercept, Slope, Partial Correlation, Significance tests, OLS Assumptions,…

Short Questions: Normal and Standard Normal Distribution

The following post is about Short Questions related to Normal and Standard Normal Distribution. Q1: What is a standard normal variable? Ans: The variable $Z=\frac{X-\mu}{\sigma}$ which measures the deviations of variable $X$ from the…

Posts: gmstat.com: GM Statistics

MCQs Number System – 4

MCQs Economics – 3

MCQs Economics – 2

Try MCQs Economics Test 1

MCQs Economics – 1

MCQs Econometrics Quiz 5

This quiz is about Econometrics, which covers the topics of Regression analysis, correlation, dummy variable, multicollinearity, heteroscedasticity, autocorrelation, and many other topics. Let’s start with MCQs Econometrics test An application of different statistical methods applied to the economic data used…

R Frequently Asked Questions 2023 . Powered by WordPress

%d bloggers like this:
    pixel