Understanding S3 Classes in R

The post is about S3 Classes in R. Here we will learn how the S3 class system works in R, a simple yet powerful way to implement object-oriented programming in the R Language. This guide covers S3 class creation, methods like print(), and summary(), debugging tools like getS3method(), and getAnywhere(). This guide includes working code examples to better understand the S3 Classes in R!

What is mean by S3 Classes in R Language?

In R, S3 refers to the S3 object-oriented system, a simple and widely used class system in R. The S3 class in R is used to overload any function. The key features of the S3 Class System in R Language are:

  • Informal Class System: No formal class definition; objects are assigned a class attribute.
  • Generic Functions: Uses functions like print(), summary(), and plot() that behave differently based on the object’s class (method dispatch).
  • Method Naming: Methods follow the pattern generic.class() (e.g., print.lm() for linear models).
  • Flexible but Simple: Easy to implement but lacks strict structure (unlike S4 or R6).

S3 is commonly used in base R (e.g., lm(), glm(), and data.frame use S3).

S3 Classes in R Language

Give an Example of Creating an S3 Class in the R Language

S3 is R’s simplest object-oriented system. You create an S3 class by:

  • Assigning an class attribute to an object (it is usually a list of objects)
  • Defining methods (functions) for that class (for example, print.classname)

Example of Creating an S3 Class in R

Let us create an S3 class in R

# Define a record object (a list with a class attribute)
record <- list(name = "Imdad", age = 40, site = "https://rfaqs.com")
class(record) <- "record"  # Assign class

After creating an S3 Class, let us create a method for the class

# Custom print method for "record" class
print.record <- function(x) {
  cat("Site Author Name:", x$name, "\n")
  cat("Age:", x$age, "\n")
  cat("Site:", x$site, "\n")
}

One can test an S3 object easily

print(record)
Creating an S3 Class in R

Note that the method/class has the “dot” naming convention of method.class.

What are getS3method() and getAnywhere() in R?

Both getAnywhere() and getAnywhere() methods are useful for exploring R’s object-oriented systems.

  • getS3method(): getS3method() retrieves the implementation of an S3 method for a specific class. The general syntax is
    getS3method("print", "data.frame") # shows how ‘print.data.frame‘ works.
  • getAnywhere(): getAnywhere() finds functions/ methods anywhere (loaded packages, namespaces, or S3/S4 registries). The syntax is getanywhere("print.data.frame") # finds ‘print.data.frame‘ even if not exported

The key difference between getAnywhere() and getAnywhere() is

FunctionScopeUse Case
getAnywhere()Specific S3 method lookupDebuggin known S3 methods.
getAnywhere()Global searchFinding hidden/ unexported methods.

Write about Useful S3 Generic Methods with examples

The useful S3 generic methods are summary(), plot(), predict(). These S3 generic methods can be customized too.

For example,

summary.record <- function(x){
  paste(x$name, "is author of", x$site)
}

summary(record)
Example of Useful S3 Generic Methods

What is the importance of the S3 Class System in R?

The S3 class system is a foundational feature of R’s object-oriented programming (OOP) approach. Despite its simplicity, it plays a crucial role in R’s functionality and ecosystem.

  • Simplicity and Flexibility: Unlike S4 or R6, the S3 class system does not require a strict structure. It is easy to implement as one just needs to assign a class attribute to an object. The S3 objects are dynamic dispatch, as methods like print(), summary() and plot() adapt based on class.
  • Widely used in Base R and Popular Packages: The R core functions (such as lm(), glm(), data.frame) rely on S3. Similarly, packages such as ggplot2, dply4, and stats use the S3 class system for extensibility. The custom methods, such as print.ggplot() allows seamless integration. For example
  • Enables Polymorphism (Generic Functions): Using the S3 class system, one can enable polymorphism, that is, the same function, different behaviour. For example,
    • print() behaves differently for data.frame, lm, and custom objects.
    • plot() adapts to histogram, scatterplot, or custom visualizations.
  • Easy Debugging and Inspection: getS3method() and getAnywhere() can be used for easy debugging and inspection.
  • Fast for prototyping and Lightweight: The S3 class system requires no complex setup, and it is ideal for quick data analysis and experimental code.

In a nutshell, the S3 system is R’s most widely used OOP framework because of its simplicity and deep integration with R’s ecosystem. While it lacks the rigor of S4 or R6, its flexibility makes it indispensable for statistical computing and interactive data analysis.

FAQs about the S3 Classes in R

  1. What is the concept of S3 Classes in R?
  2. How can one check the class of an object?
  3. For different data types (modes), what are the common classes used in R?
  4. How can one change the class of an object?
  5. Give examples to determine the class of different objects.
  6. Write about getS3method() and getAnywhere().
  7. Give an example that explains how S3 Classes are created in R?

Try the Quiz on MS Excel Tables

Leave a Reply

Discover more from R Programming FAQs

Subscribe now to keep reading and get access to the full archive.

Continue reading