Skip to content

R Frequently Asked Questions

Statistical Computing and Graphics in R

Menu
  • Learn R
    • R Basics
      • R FAQS about Package
      • R GUI
      • Using R packages
      • Missing Values
    • R Graphics
    • Data Structure
      • Data Frame
      • Matrices
      • List
    • R Programming
    • Statistical Models
  • R Quiz
    • MCQs R Programming
    • R Basic Quiz 7
    • MCQs R Debugging 6
    • MCQs R Vectors 5
    • R History & Basics 4
    • R Language Test 3
    • R Language MCQs 2
    • R Language MCQs 1
  • MCQs
    • MCQs Statistics
      • MCQs Basic Statistics
      • MCQs Probability
      • MCQs Graph & Charts
      • MCQs Sampling
      • MCQs Inference
      • MCQs Correlation & Regression
      • MCQs Time Series
      • MCQs Index Numbers
      • MCQs Quality Control 1
    • MCQS Computer
    • MCQs Mathematics Part-I
  • About ME
  • Contact Us
  • Glossary

Tag: Hypothesis Testing in R

Mean Comparison Tests: Hypothesis Testing (One Sample and Two Sample)

No Comments
| Comparisons Tests

Here we learn some basics about how to perform Mean Comparison Tests: hypothesis testing for one sample test, two-sample independent test, and dependent sample test. We will also learn how to find the p-values for a certain distribution such as t-distribution, critical region values. We will also see how to perform one-tailed and two-tailed hypothesis tests.

How to Perform One-Sample t-Test in R

A recent article in The Wall Street Journal reported that the 30-year mortgage rate is now less than 6%. A sample of eight small banks in the Midwest revealed the following 30-year rates (in percent)

4.85.36.54.86.15.86.25.6

At the 0.01 significance level (probability of type-I error), can we conclude that the 30-year mortgage rate for small banks is less than 6%?

Manual Calculations for One-Sample t-Test and Confidence Interval

# Manual way
X <- c(4.8, 5.3, 6.5, 4.8, 6.1, 5.8, 6.2, 5.6)
xbar <- mean(X)
s <- sd(X)
mu = 6
n = length(X)
df = n - 1 
tcal = (xbar - mu)/(s/sqrt(n) )
tcal

c(xbar - qt(0.995, df = df) * s/sqrt(n), xbar + qt(0.995, df = df) * s/sqrt(n))

Critical Values from t-Table

# Critical Value for Left Tail
qt(0.01, df = df, lower.tail = T)

# Critical Value for Right Tail
qt(0.99, df = df, lower.tail = T)

# Critical Vale for Both Tails
qt(0.995, df = df)

Finding p-Values

# p-value (altenative is less)
pt(tcal, df = df)

# p-value (altenative is greater)
1 - pt(tcal, df = df)

# p-value (alternative two tailed or not equal to)
2 * pt(tcal, df = df)

Performing One-Sample Confidence Interval and t-test Using Built-in Function

# Left Tail test
t.test(x = X, mu = 6, alternative = c("less"), conf.level = 0.99)

# Right Tail test
t.test(x = X, mu = 6, alternative = c("greater"), conf.level = 0.99)

# Two Tail test
t.test(x = X, mu = 6, alternative = c("two.sided"), conf.level = 0.99)

How to Perform two-Sample t-Test in R

Consider we have two samples stored in two vectors $X$ and $Y$ as shown in R code. We are interested in the Mean Comparison Test among two groups of people regarding (say) their wages in a certain week.

X = c(70, 82, 78, 70, 74, 82, 90)
Y = c(60, 80, 91, 89, 77, 69, 88, 82)

Manual Calculations for Two-Sample t-Test and Confidence Interval

nx = length(X)
ny = length(Y)
xbar = mean(X)
sx = sd(X)
ybar = mean(Y)
sy = sd(Y)
df = nx + ny - 2
# Pooled Standard Deviation/ Variance 
SP = sqrt( ( (nx-1) * sx^2 + (ny-1) * sy^2) / df )
tcal = (( xbar - ybar ) - 0) / (SP *sqrt(1/nx + 1/ny))
tcal

# Confidence Interval
LL <- (xbar - ybar) - qt(0.975, df)* sqrt((SP^2 *(1/nx + 1/ny) ))
UL <- (xbar - ybar) + qt(0.975, df)* sqrt((SP^2 *(1/nx + 1/ny) ))
c(LL, UL)

Finding p-values

# The p-value at the left-hand side of Critical Region 
pt(tcal, df ) 

# The p-value for two-tailed Critical Region 
2 * pt(tcal, df ) 

# The p-value at the right-hand side of Critical Region 
1 - pt(tcal, df)

Finding Critical Values from t-Table

# Left Tail
qt(0.025, df = df, lower.tail = T)

# Right Tail
qt(0.975, df = df, lower.tail = T)

# Both tails
qt(0.05, df = df)

Performing Two-Sample Confidence Interval and t-test Using Built-in Function

# Left Tail test
t.test(X, Y, alternative = c("less"), var.equal = T)

# Right Tail test
t.test(X, Y, alternative = c("greater"), var.equal = T)

# Two Tail test
t.test(X, Y, alternative = c("two.sided"), var.equal = T)

Note if $X$ and $Y$ variables are from a data frame then perform the two-sample t-test using formula symbol (~). Let first make the data frame from vectors X and Y.

data <- data.frame(values = c(X, Y), group = c(rep("A", nx), rep("B", ny)))

t.test(values ~ group, data = data, alternative = "less", var.equal = T)
t.test(values ~ group, data = data, alternative = "greater", var.equal = T)
t.test(values ~ group, data = data, alternative = "two.side", var.equal = T)

To understand probability distributions functions in R click the link: Probability Distributions in R

Share this:

  • Twitter
  • Facebook
  • LinkedIn
  • Skype
  • Tumblr
  • Pinterest
  • Print
  • WhatsApp
  • Telegram
  • Reddit
  • Pocket

Like this:

Like Loading...

Read More »

Subscribe via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 265 other subscribers

Search Form

Facebook

Facebook

Categories

  • Advance R Programming (3)
  • Data Analysis (12)
    • Comparisons Tests (2)
    • Statistical Models (10)
  • Data Structure (9)
    • Data Frame (2)
    • Factors in R (1)
    • List (2)
    • Matrices (2)
    • Vectors in R (1)
  • Importing/ Exporting Data (4)
    • R Data Library (4)
  • R Control Structure (3)
    • For loop in R (1)
    • Switch Statement (1)
  • R FAQS (18)
    • Missing Values (2)
    • R Basics (12)
    • R FAQS about Package (3)
    • R Programming (2)
  • R Graphics (4)
    • Exploring Data in R (1)
    • plot Function (2)
  • R Language Basics (4)
  • R Language Quiz (8)
  • Using R packages (2)
https://www.youtube.com/watch?v=MZpiMyAfnYQ&list=PLB01qg3XnNiMbKkvP2wYzzHkv6ZekaKZx

Posts: itfeature.com: Basic Statistics and Data Analysis

MCQs Chi-Square Association 2

The relationship/ Dependency (also called Association) between the attributes is called relationship/association and the measure of degrees of relationship between the attributes is called the coefficient of association. The Chi-Square Statistic is used to…

Short Questions Sampling and Sampling Distributions 1

The post is about some important Short Questions about sampling and sampling distribution. Q1: Define Sample and Sampling. Answer: Sample: A small portion of the population representing the qualities of the population being sampled…

MCQs IBM SPSS-1

Online MCQs about IBM SPSS with answers.

MCQs Correlation and Regression 6

This Quiz contains MCQs about Correlation and Regression Analysis, Multiple Regression Analysis, Coefficient of Determination (Explained Variation), Unexplained Variation, Model Selection Criteria, Model Assumptions, Interpretation of results, Intercept, Slope, Partial Correlation, Significance tests, OLS Assumptions,…

Short Questions: Normal and Standard Normal Distribution

The following post is about Short Questions related to Normal and Standard Normal Distribution. Q1: What is a standard normal variable? Ans: The variable $Z=\frac{X-\mu}{\sigma}$ which measures the deviations of variable $X$ from the…

Posts: gmstat.com: GM Statistics

MCQs Number System – 4

MCQs Economics – 3

MCQs Economics – 2

Try MCQs Economics Test 1

MCQs Economics – 1

MCQs Econometrics Quiz 5

This quiz is about Econometrics, which covers the topics of Regression analysis, correlation, dummy variable, multicollinearity, heteroscedasticity, autocorrelation, and many other topics. Let’s start with MCQs Econometrics test An application of different statistical methods applied to the economic data used…

R Frequently Asked Questions 2023 . Powered by WordPress

%d bloggers like this:
    pixel